

Ringraziamenti

Solitamente i ringraziamenti si mettono alla fine...ma per me è il caso di inizare a qui.

Ringrazio tutti partecipanti alla Clinics di oggi presso Novegro. Non avrei mai detto che con un argomento "noioso" e di "non interesse," il digitale sul plastico, sarei riuscito a raduna re quella piccola folla che ha seguito la mia clinics.

Grazie tutti sopratutto all'ASN che ha permesso questo.

Il digitale sul plastico

Ing. Epifanio Raneri www.dccworld.com

MOLTO PIÙ SEMPLICE DI QUANTO CREDIATE

Premessa

- L'argomento è vasto e potremmo parlarne per dei mesi;
- Totale disinteresse della stampa di settore (solo in Italia);
- Lo scopo di questa "clinics" è quello di dare degli spunti sulle cose da tenere in considerazione nella costruzione di un plastico digitale;
- Per plastico digitale non intendiamo un plastico in cui è stato rimpiazzato un alimentatore tradizione con una centrale digitale;
- Per plastico digitale intendiamo un plastico che sfrutta appieno tutte le peculiarità del digitale.

DIGITALE: una roba da bambini! (Cit. MDP)

Bastano due fili?

- Tra i noti vantaggi del digitale c'è quello di poter gestire più locomotive o in generale decoder con due fili.
- Generalmente è vero per i plastici medio piccoli;
- Nel complesso il numero di fili da tirare è sempre inferiore a quello di un impianto analogico;
- Il semplice automatismo in digitale da una parte non richiede la conoscenza dell'elettronica ma dall'altra necessita dell'utilizzo di componenti standard che possono avere il loro costo e necessita del loro cablaggio.

Parte del plastico digitale del fremo meeting Italia H0 2013 organizzato da CV19

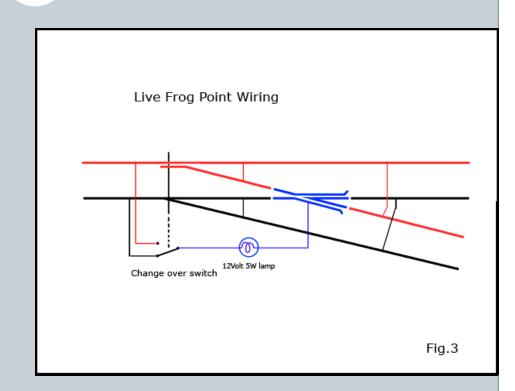
L'alimentazione del plastico digitale

- L'elemento che fornisce potenza/alimentazione al plastico è il booster (in alcuni manuali commerciali chiamato anche amplificatore) e in un modo o nell'altro è a corredo di tutte le centrali digitali;
- Per un piccolo plastico generalmente è sufficiente il booster in dotazione alla relativa centrale;
- Per un grosso plastico è consigliabile suddividere in diverse sezioni che chiameremo distretti di potenza;
- Ogni distretto è alimentato da un proprio booster;
- Anche i decoder per scambi o in generale i decoder per accessori saranno alimentati da un proprio booster;
- Per l'Ho è sconsigliabile usare le lampadine a protezione dei distretti di potenza, in quanto locomotive esose di corrente potrebbero accendere al lampadina e fermare il rotabile.
- Per l'N il sistema della lampadina non incontra controindicazioni particolari,

Il 10761 come il 10764 del Lokmaus / Multimaus contrariamente a quanto indicato sulla documentazione del produttore non è una centrale digitale ma è un semplice booster.

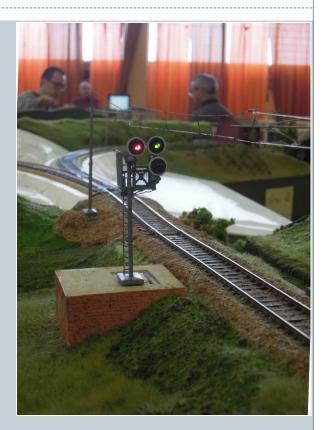
Scambi in digitale 1/2

- Per usare gli scambi in digitale serve ... un decoder.
- Ci sono decoder per ogni tipologia di motore per scambio (elettromagnetici, lenti, servo).
- Possiamo già fare una prima distinzione tra quelli ad alimentazione separata e quelli con alimentazione integrata (da DCC).
- I decoder ad alimentazione integrata offrono da una parte una notevole semplicità di cablaggio ma dall'altra soffrono di alcuni svantaggi:
 - Prelevando l'alimentazione dal DCC, "caricano il booster" di conseguenza;
 - In caso di cortocircuito (svio, tallonamento) è impossibile muovere gli scambi comandati dal decoder.
- I decoder ad alimentazione integrata sono da evitare sui grandi plastici!
- I decoder ad alimentazione separata al costo di un cablaggio leggermente più complicato offrono alcuni vantaggi:
 - Prelevano l'alimentazione da un alimentatore o trasformatore separato invece che dal DCC (più economico comprare un alimentatore che un booster DCC);
 - In caso di cortocircuito (svio, tallonamento) è possibile muovere gli scambi comandati dal decoder (usando un bus separato).



Scambi in digitale 2/2

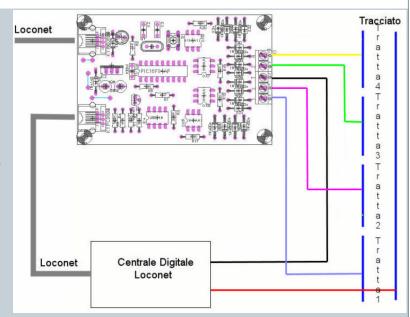
- Relativamente alla gestione delle prese di corrente, sugli scambi rimane valido quanto in uso sui plastici tradizionali.
- Cercare di usare scambi con cuore polarizzato.
- Proteggere il cuore con una lampadina in modo che il tallonamento non crei corto mandando in protezione la centrale digitale;
- La centrale digitale che usiamo ci deve permettere un comodo comando degli scambi e supportare gli itinerari.


Cuore di uno scambio polarizzato protetto dal tallonamento tramite una lampadina.

Segnali

- In digitale i segnali sono un componente puramente estetico;
- I segnali in digitale non influenzano in alcun modo la marcia del treno;
- La gestione dei segnali si ha tramite un decoder accessori;
- La centrale digitale non distingue tra un segnale ed uno scambio o un altro accessorio fisso: li pilota allo stesso modo;
- Pilotare i segnali a vela FS è un delirio;
- Un segnale FS può avere anche 15 aspetti;
- Il decoder scelto deve poter pilotare gli aspetti desiderati;
- Se si decide di usare un software per PC, questo deve essere in grado di pilotare gli aspetti sul decoder scelto;
- Buona parte dei decoder commerciali non supportano segnali italiani (tedeschi, svizzeri).

Segnale FS a candeliere protezione di un bivio sul plastico del gruppo CV19



Tratte

- Per tratta intendiamo una sezione di binario isolata su una o due rotaie;
- In digitale le tratte sono necessarie per i dispositivi di frenata, per i moduli di retroazione, per i già visti distretti di potenza e per i cappi;
- Per i distretti di potenza serve una tratta in quanto la stessa deve essere alimentata da un solo booster (la tratta e il distretto coincidono);
- I generatori di fermata sono dei dispositivi che mandano sul binario un segnale speciale in grado di fermare il treno in digitale: la stessa tratta non può essere alimentata in contemporanea da centrale digitale (booster) e generatore di fermata:
- Per i cappi la problematica è la medesima degli impianti tradizionali, le rotaie si invertono e sono necessari i sezionamenti per la gestione e il passaggio;
- Infine per i moduli di retroazione se usa un sensore ad assorbimento è necessario isolare la rotaia collegata allo stesso affinché possa rilevare.

Schema di principio del collegamento delle tratte sui moduli di retroazione nel plastico di CV19.

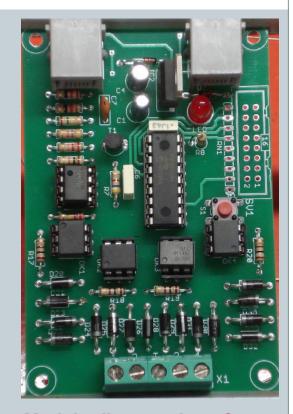
proposti dai modellisti punti di modellisti punti di modellisti pri modellisti pr

- Buona parte delle centrali digitali presenti sul mercato mette a disposizione un bus di estensione;
- Il bus di estensione permette di estendere le funzioni della centrale digitale (aggiungere palmari, moduli di retroazione, interfacce PC);
- Grazie a una politica commerciale vincente, il più diffuso (ma limitato) è l'Xpressnet di Lenz usato anche da Roco (Lokmaus, Z21) e altri;
- Il Loconet è utilizzato storicamente dalla intellibox ma inventato dalla Digitrax;
- Sui plastici medio grandi l'Xpressnet è da evitare a causa di una serie di limitazioni;
- Quando si progetta un plastico digitale bisogna tener conto della stesura del bus di estensione.

Palmari aggiuntivi collegati al bus di estensione dell'intellibox

Bidirezionalità

- Il protocollo DCC prevede una sola direzione della comunicazione: la centrale parla, i decoder ascoltano;
- La centrale digitale non può sapere se un rotabile è sul plastico e nemmeno dove si trova;
- Per ovviare alla unidirezionalità del protocollo, è stato introdotto il Railcom che rende il DCC bidirezionale;
- In sostanza il Railcom è un segnale emesso dai decoder, in alcuni momenti di pausa del DCC, che può essere letto tramite opportuni rilevatori;
- Usato per la programmazione (in corsa) e lettura CV sul tracciato senza la necessita di usare un binario di programmazione;
- Usata per rilevare esattamente quale treno percorre una tratta;
- Il Railcom non è ancora "largamente" usato;
- · Il Railcom non è una peculiarità delle centrali di fascia bassa.


L'uso delle tratte comporta un notevole aumento dei fili sul plastico.

Retroazione

- Retroazione, nel nostro contesto, vuol dire riportare
- Indietro una informazione dal plastico verso la centrale;
- Senza la necessità dell'uso del Railcom è possibile seguire/segnalare la presenza di un treno usando dei moduli di retroazione:
- Si sfrutta la chiusura di un "contatto" sul modulo di retroazione;
- A chiudere il contatto sul modulo di retroazione può essere un sensore ad assorbimento, un reed, un optorilevatore o simile:
- I moduli di retroazione si collegano al bus di estensione della centrale digitale che deve poterli supportare;
- Il modulo di retroazione segnala alla centrale digitale la chiusura del contatto tramite il bus di estensione;
- Un PC collegato alla centrale digitale incrociando le informazione di retroazione e dell'itinerario impostato è in grado di seguire un treno.

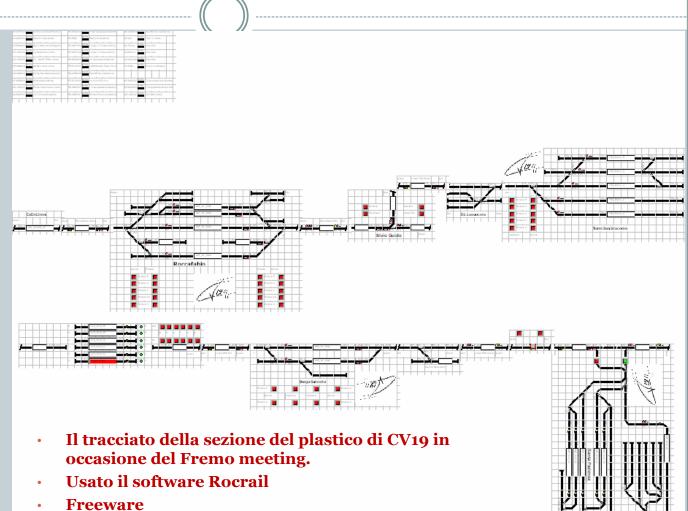
Modulo di retroazione S4 che integra 4 sensori ad assorbimento

L'uso del PC sul plastico 1/2

- Per semplificare una serie di problematiche può essere consigliabile l'utilizzo del PC;
- Il PC può essere usato sia come interfaccia utente (no automatico) per manovrare il plastico, sia come gestore automatico del plastico;
- In manuale sul PC visualizziamo il sinottico della stazione;
- Più facile, prestante e versatile realizzare un sinottico su PC che uno fisico anche in digitale;
- Anche con l'esercizio manuale il possono attivare dei semplici automatismi:
 - Gestire itinerari e relativo segnalamento;
 - Gestire passaggi a livello;
 - Gestire cappi senza la necessità del modulo per i cappi.

Sul plastico di CV19 quando siamo in pausa pranzo il pc gestisce il plastico per noi.

Il pc sul plastico non vuol dire per forza automatico!



L'uso del PC sul plastico 2/2

Supporta i segnali italiani

- Se si dispone di moduli di retroazione sul sinottico verranno visualizzate le occupazioni da parte dei convogli;
- Se si dispone di moduli di retroazione è possibile la gestione automatica del plastico;
- Durante l'esercizio automatico si possono condurre anche dei convogli manualmente;
- Il PC facilita la programmazione delle CV.

La centrale digitale?

- Volutamente la centrale è stata messa per ultima;
- Non esiste la centrale digitale migliore e quella peggiore, qualità a parte;
- Esiste la centrale che più si avvicina alle nostre esigenze;
- La centrale va scelta tenendo presente quali tra le esigenze presentate (sommariamente) nelle diapositive precedenti vogliamo soddisfare;
- Prima di scegliere la centrale digitale valutate:
 - Quanti convogli voglio muovere (corrente necessaria quindi booster);
 - Comandare scambi e segnali (gestione comoda dei segnali);
 - Necessità di comandi palmari aggiuntivi o altri dispositivi (bus di espansione, retroazione);
 - Necessità di automatismi (uso del pc, quindi centrale che ne deve supportare il collegamento)

- Nel gruppo fermodellistico CV19 le sopracitate esigenze sono soddisfatte dell'intellibox;
- Vecchia di 10 anni se non più rimane una valida centrale;

Con una spesa oculata si può ottenere molto!

^l numeri del plastico del gruppo CV19

- Quando è montato per intero il plastico di CV19 ha un'estensione lineare di circa 80 m.
- Il plastico è gestito da una centrale digitale vecchia di 10 anni e più: un Intellibox 1 che soddisfa tutte le esigenze del plastico;
- Sono presenti 7 booster con altrettanti distretti di potenza;
- E' in uso il bus Loconet;
- Sono presenti 4 booster di segnale Loconet per "ridare" potenza al segnale loconet stesso;
- In media sono presenti un minimo 22 macchine;
- Sono in uso 350 indirizzi accessori;
- Sono in uso 160 indirizzi di retroazione;
- Ogni modulo ha almeno un modulo di retroazione;
- Tutti i segnali funzionano (aspetti) in modo realistico e non influenzano la marcia;
- Il plastico è gestito dal software gratuito Rocrail;
- Ogni stazione ha un proprio PC che gestisce una tratta di competenza;
- Il plastico funziona in manuale con scambi e treni controllati dagli operatori;
- Il plastico funziona in automatico con scambi e treni controllati dal PC.

Anche se supportati dalla nostra infrastruttura non usiamo i tablet o gli smartphone (scomodi)!

BINE

Vi aspetto su:

www.dccworld.it www.dccworld.it/forum

QUALCUNO ANCORA SVEGLIO?